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1. Introduction 
  
 Accurate prediction of protein tertiary structure solely from sequence information 
has been an open problem for nearly half a decade. Though experimental biologists are 
able to determine protein structure through techniques like X-Ray Crystallography and 
more recently Nuclear Magnetic Resonance Spectroscopy, these methods are too slow 
and costly to enable the prediction of large numbers of hypothetical protein sequences. 
Instead, it is up to simulation techniques to try and guess what structure an amino acid 
sequence will fold to, before a single lab coat is donned.  A variety of methods have 
shown promise, yet none provide consistently accurate results, at desired atomic 
resolution, while managing to remain computationally tractable even for large proteins. 
Despite the efforts of a large number of research groups, and the application of ideas 
from a plethora of related fields and problems, ab initio protein modeling is still not a 
reality. 
 The benefits to be gained from the solution of this problem, however, are quite 
clear. Drug-designers would be able create specific structures and target specific protein 
interactions on an as-yet unrealized scale. In addition, several currently incurable diseases 
are believed to be caused by protein misfolding, including cystic fibrosis, Alzheimer’s, 
and Parkinson’s [Cohen and Kelly, 2003]. Greater understanding of the folding process 
could lead to insight into the mechanisms of these diseases, or possible synthetic proteins 
to replace the misfolded ones. Finally, the biotech industry has in recent years seen an 
explosion of new and novel uses of enzymes outside the biological realm. Accurate 
structure prediction would be an immensely valuable tool for researchers in this field as 
well. 
 The problem is well defined, the benefits apparent, but the solution remains 
elusive. Here we discuss the progression of methodology for the Side-Chain Problem, a 



subset of the general folding problem, and compare new promising avenues of research, 
in the hopes that a synthesis of approaches might expedite the solution of this important 
problem. 
 
2. The Side-Chain Problem 
 
A. Definition 

Many approaches to protein structure prediction break the problem down into two 
steps: backbone modeling and side-chain modeling. Several techniques exist that provide 
relatively good structure prediction for the backbone of a protein. One such technique is 
homology modeling, whereby backbone structure of a protein is assumed to be similar to 
that of other proteins homologous to the sequence. This method relies on the existence of 
known structures for homologues of a test protein sequence. If no such homologues exist, 
an alternative technique, known as protein threading, uses statistical techniques to 
compare subsets of a test protein sequence with other sequences in a databank, providing 
structural information without the need for homologues. Both techniques, however, rely 
on existing known structures. There exist de novo techniques for backbone prediction that 
have shown promising accuracy as well, but these will be discussed later. 
 Once the structure of the protein backbone is known, there is still the task of 
finding the conformation of its side-chains. Each side-chain can rotate around one or 
more dihedral angles, creating an immense number of possible structural forms, even 
with a stationary backbone. The different positions of the side-chains all affect the 
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potential energy of the protein through well-known forces (van der Waals forces, 
columbic interactions, hydrogen bonding, etc.). Thus the Side-Chain Problem can be 
formalized as:  
 Given a protein backbone with n side-chains, find the set of torsion 
 angles χ = (χ1, χ2… χn’) such that the potential energy function of 
 the protein is minimized. (Note it is possible that n’ > n since some 
 side-chains have more degrees of rotational freedom). 



 
B. Difficulty 
 The number of possible combinations of side-chain positions grows quite rapidly 
as the number of residues in a protein increases. Even breaking down possible rotational 
angles into discrete 10° movements, a group of five residues each with two dihedral 
angles already yields about 1015 possible conformations [Lee and Subbia, 1990]. As more 
residues are added, even if one decreases the possible angles to just a few likely ones for 
each dihedral, the size of the space that must be searched for the minimum energy 
conformation quickly becomes huge. For example, taking protein 1CD4 (PDB code), 
with 173 residues, and using only the most likely torsion angles at a resolution of 1.7 
angstroms, there are 2x10111 possible side-chain conformations[Tuffery et al., 2004]. 
Even with a trillion4 computers that could each search a trillion4 combinations every 
second to see which had the least energy, it would still take 60 million years to look at 
every combination and find the smallest. Furthermore, the average protein size is about 
300 residues 
 Beyond a “large search space” heuristic argument, there also exist several 
complexity proofs relating to the Side-Chain Problem. Abstracting the shapes of residues 
to simple blocks, and even only allowing a few possible angular values for each dihedral, 
it is provable that the problem of finding an assignment of angles that prevents any 
residue from intersecting any other residue is NP-complete [Akutsu, 1997]. This implies 
that there does not exist a polynomial-running time algorithm that can solve the Side-
Chain Problem. By reformulating the Side-Chain Problem as a semidefinite program (a 
convex optimization problem over positive semitdefinite matricies), it can be shown that 
not only is the Side-Chain Problem not computable in polynomial time, it can not even be 
approximated in polynomial time [Chazelle et al., 2004]. 
 It is starting to become clear why the protein-folding problem is taking so long to 
resolve. 
 
3. Initial Methods 
 
A. Search Space Reduction 
 Several initial approaches to the Side-Chain Problem revolved around trying to 
reduce the size of the search space. The most intuitive way to do this is imply to 
discretize the possible angular values for each dihedral angle. In the 1960’s two 
researchers, Ramachandran and Sasisekharan, plotted the two dihedral angles of 
backbone amino acids against each other on the same axis for a variety of experimental 
protein structures, discovering something quite interesting: there were only a few regions 
that had consistent data. Ramachandran was able to use this information to take all the 
possible combinations of torsion angles, and reduce them to just a few likely 
assignments, known as rotamers. This idea proved extendable to side-chain dihedral 
angles as well, and virtually every method that attempts to solve the Side-Chain Problem 
does so in rotamer space rather than angular space, drastically reducing the number of 
possible angles for each dihedral. 
 A more recent development in the reduction of possible side-chain conformation 
combinations came in 1991, with the Dead-End Elimination Theorem [Desmet et al., 



1991]. Dead-End Elimination takes the global energy function, which is quadratic in the 
number of residues, not exponential, and thus computationally tractable, and uses it to 
form conditions under which certain rotamers are absolutely incompatible with the global 
minimum energy conformation. Thus certain rotamers, though probable for a given  
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side-chain, can be discounted as dead-ends in terms of the protein structure as a whole, 
further reducing the search space. 
 Even with these reductions, however, the number of possible side-chain 
conformations remains large, and an efficient search strategy is necessary to provide 
useful results in a reasonable amount of time. 
 
B. Search Strategies 
 A number of different strategies have been contemplated for searching rotamer 
space. One such strategy, simulated annealing, relies on the fact that even though the 
space is discretized, there are still regions of continuity where the energy is lower [Lee 
and Subbiah, 1991]. The intuition is that if all the rotamer assignments were correct, 
except for one, the global energy of the side-chains would still be very low. Thus if the 
search process pays attention to regions where energy is decreasing, it is more likely to 
end up near a minimum. Simulated annealing works by adding a temperature parameter 
constraining the step-length of the random search, one that decreases when a “valley” is 
found in the energy function. Thus the search is guided towards energy minima, however 
there is no guarantee that the minimum is global, and not local. 
 The local minima problem can be circumvented by a Monte Carlo approach, in 
which different random initial configurations are chosen for simulated annealing [Holm 
and Sander, 1992]. Among the many minima found by the Monte Carlo process, the one 
with the lowest energy is very likely to be the global minimum rather than a local 
minima, assuming enough trials have been performed. Unfortunately, by its nature, 
Monte Carlo processes are computationally intensive, since they require repeated 
searching from different starting values. This cost can be mitigated with the use of 
learned weights, but is still large. 



 A further enhancement to the search processes came with the use of Machine 
Learning techniques, namely neural networks. By using neural nets to create a 
distribution of side-chain dihedral angles, it is possible to further guide the Monte Carlo 
simulated annealing process [Hwang and Liao, 1995]. The distribution of dihedral angles 
can be used to trim away some of the possible rotamers, speeding up the Monte Carlo 
iterations. Yet even with all these refinements, the size and resolution of computable 
proteins, as well as the accuracy attainable, were far from desired levels. 
 
C. Side-Chain With a Rotamer Library (SCWRL) 
 Bringing a new approach to the table, the SCWRL algorithm, first proposed in 
1997, circumvented the need to search rotamer space for a global minimum [Bower et al., 
1997]. The strategy instead was to use a rotamer library to choose the most favorable 
conformation for each residue, and then systematically move down through the less-
favorable rotamers until one is found that does not conflict with the given backbone. This 
procedure is bound to create clashes between side-chains, but these are simply shoved 
into interacting “clusters”, and resolved one at a time. If too many side-chains start 
interacting with each other, the cluster is subdivided and the process is iteratively 
repeated, until there are no more clashes. At this point, side-chains will theoretically be 
positioned at the lowest energy rotamers they could attain without causing clashes, up to 
an approximation factor. 
 SCWRL quickly became one of most widely used pieces of software for structure 
prediction, owing to its public access, and relative speed and ease of use. The algorithm 
went through several revisions over the next few years, but suffered from poor 
performance on non-native backbones, lack of incorporation of van der Waals forces, and 
overuse of search-space-reduction heuristics that sometimes eliminated the global 
minimum energy conformation as a possibility. SCWRL3.0 was introduced in 2003 to 
overcome these problems with a novel algorithm inspired by graph theory. 
 SCWRL3.0 begins with Dead-End Elimination to remove incompatible rotamers 
from the search space (rather than the previous, more complicated SCWRL heuristics). It 
then  attempts to assign the best rotamer as before, and then creates an undirected graph 
from the clusters of interacting side-chains [Canutescu, et al., 2003]. This biconnected 
graph (a connected graph that cannot become disconnected with the removal of a single 
vertex) is broken down into subgraphs, and clusters that intersect multiple subgraphs are 
resolved first. The result is an algorithm dependent on the size of the largest cluster of 
interacting side-chains, rather than on the size of the entire side-chain space for the 
protein. 
 Comparing SCWRL3.0 with older versions of the algorithm, as well as other 
contemporary methods, similar or better accuracy was demonstrated, with computational 
time decreased by orders of magnitude, and previously intractable protein sizes now 
computable [Canutescu, et al., 2003]. 
 
4. Modern Methods and Benchmarks 
 
A. Critical Assessment of protein Structure Prediction (CASP) 



 As the number of different methods for protein structure prediction increased, it 
became necessary to have some kind of standardized rubric in order to judge their relative 
accuracies and speeds. Thus CASP was born, a bi-annual conference in which structure 
predictors could test their mettle. In order to fairly judge methods, a collection of 
unpublished experimental protein structures is collected for each CASP proceeding, and 
various labs are granted five attempts at predicting the structure from the given sequence. 
The predictions are submitted anonymously, and graded by an independent panel. 
 The trend uncovered by CASP proceedings over the years has been a steady, but 
slow, improvement in structure prediction capabilities. Unfortunately, after SCWRL3.0 
there was little improvement in side-chain prediction over the next few years, and the 
report from CASP7 in 2006 described progress from the previous trials as “modest at 
best” [Kryshtafovych et al., 2007]. 
 
B. Tree-Decomposition 
 SCWRL3.0 opened the door for graph theory results to be applied to the Side-
Chain Prediction Problem, one of the most notable being Tree Decomposition in 
TreePack [Xu and Berger, 2006]. TreePack uses the same simple energy function and 
notion of a residue-interaction graph as SCWRL, but solves the rotamer assignment 
 

 
Simple pairwise inter-atomic energy scoring function used by TreePack and SCWRL3.0 [Xu and Berger, 

2006] 
 

problem in a different manner. The residue-interaction graph is decomposed into clusters, 
which are in turn fitted to a tree. This is a common procedure used on sparse graphs in 
NP-hard problems, and allows the transformation of a large graph into a smaller tree, 
with low-width. Once the tree decomposition is performed, the resulting cluster tree is 
traversed once from leaves to root, in order to determine optimal rotamer assignments, 
and then again from root to leaves to determine feasible rotamer assignments. The result 
is a fast algorithm that returns a set of rotamer assignments with near-minimum energy. 
 Xu and Berger take a step usually omitted by the authors of other methods, which 
is to actually prove the running time of their algorithm. Since the computational cost of 
the algorithm is only dependent on the width of the tree decomposition, the total cost of 
the TreePack algorithm can be shown to be 
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many proteins. 
 In practice, TreePack runs on average 5 times faster than SCWRL3.0 (running all 
the way up to 90 times faster in one case). TreePack was also able to predict the 
structures of several protein sequences that had been too large for SCWRL to deal with. 
Finally, despite its much greater speed, TreePack was able to maintain comparable 
accuracy to SCWRL3.0, and beat out other contemporary models, even on predictions of 



proteins with non-native backbones. But accuracy in general was still far too low to 
consider the side-chain problem solved. 

In response to TreePack, SCWRL4 was released, which incorporated the use of 
tree-decomposition into the SCWRL algorithm, along with a dynamic programming 

 
Accuracy of side-chain first and first+second dihedral angle predictions using leading methods, from [Xu 

and Berger, 2006] 
 

optimization, and a denser energy function [Krivov et al., 2009]. Although no comparison 
with TreePack is given, the authors do show an increase in predictive power across the 
board from SCWRL3.0 to SCWRL4. The running time of the algorithm, however, is the 
same order of magnitude, if not slightly slower, highlighting the constant trade-off 
between speed and accuracy that plagues the protein-modeling world. 
 
C. Rosetta 
 Another worthy mention in the protein structure prediction field is the Rosetta 
folding software, from the Baker Lab. Rosetta brings back the Monte Carlo simulated 
annealing search approach, but streamlines it, combining the side-chain conformation 
search with backbone perturbations in its structure prediction algorithm, and its protein-
protein docking prediction algorithm (one step further than structure prediction, where 
two structures are introduced and the docking site between them estimated). Rosetta 
manages to incorporate more detailed energy functions than predecessors, while 
maintaining computational efficiency, with a combination of conformational sampling, 
low and high resolution passes, and pre-packing. 
 

 
Rosetta energy score S for an atom, combinging attractive and repulsive van der Waals, solvation energy, 

hydrogen bond energy, rotamer probabilities, and coulombic potentials, each with a weight term that varies 
depending on which phase of iteration is currently being performed, from [Gray et al., 2003] 

 
 In order to save computation time, Rosetta first calculates backbone moves with 
simplified side-chain representations, and then optimizations the side-chain 



conformations in detail once every eight iterations [Gray et al., 2003]. This combination 
of low and high resolution passes prevents wasted effort, while still providing the 
necessary detail to keep the side-chains moving towards the minimum energy 
conformation. In addition, Rosetta utilizes a procedure similar to the initial steps of 
SCWRL, in which subsets of the protein sequence are “pre-packed”, with their rotamers 
set to the optimal conformation for that subsequence. Any clashes introduced by this pre-
packing are then addressed in the course of normal iteration. 
 Rosetta also introduced the concept of conformational sampling, by which Monte 
Carlo search is aided by a library of sequence structures [Das and Baker, 2008]. As 
previously discussed, simulated annealing is sensitive to local minima, so Rosetta 
performs Monte Carlo search to find as many local minima as possible. In order to keep 
this process feasible for large numbers of Monte Carlo trials, the initial searches are 
performed at a very low resolution, with the structure library of residue conformations 
used as a distribution to aid in the calculation of energy score, and keep the error induced 
by the low resolution as small as possible. The next step is to pick a set of the lowest 
minima uncovered by the Monte Carlo search (not just the lowest one, since the low 
resolution and conformational sampling introduce uncertainty into the energy score) and 
re-optimize the side-chains with full-atomic resolution, making small changes to 
backbone torsions as well if necessary. 

 
Conformational sampling procedure: a. Low-resolution representation of the protein b. Minimum energy 

conformation found at low-resolution c. High resolution side-chains introduced, rotamers re-optimized for 
the final conformation, from [Das and Baker, 2008] 

 
 The results of the algorithm are accurate and tractable (if not lighting-quick), with 
Rosetta consistently placing well in the CASP rankings of structure predictions. 
 
5. New Directions 
 



A. Distributed Computing 
 Instead of seeking to decrease the difficulty of the problem, distributed computing 
attempts to increase the power of our algorithms, making previously intractable problems 
possible with sheer brute-force. This is accomplished by harnessing the power of private 
computing, farming out tasks to individual CPUs to be completed during down time, and 
then collecting the results in a central processor for integration. The SETI@home 
program famously attempted to do this in order to analyaze radio telescope data for signs 
of extraterrestrial life, accumulating more than 400,000 years of CPU time in just 36 
months. 
 This technique was first applied to protein folding with the Folding@home 
project, from the Pande Lab at Stanford. Folding@home is different from other methods 
discussed here in that it is a molecular dynamics simulator, seeking not only to determine 
the final structure of a folded protein, but also how the folding processes itself plays out 
in real time. This is made possible in a distributed environment by a technique know as 
“ensemble dynamics”, which utilizes parallel stochastic simulations with a high 
likelihood of there being one of the group that will exhibit correct behavior [Larson et al., 
2002].   
 The distributed approach has since been applied to search-style protein structure 
prediction, and to side-chain conformation prediction, with Rosetta@home. 
Rosetta@home takes advantage of the fact that Monte Carlo searches are entirely 
parallelizable, thus removing one of the larger computational constraints from the Rosetta 
structure prediction and side-chain optimization process. Rosetta@home also includes 
 

 
Screenshot of the Rosetta@home screensaver in progress, from 
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an application called FoldIt, in which human users can help the Monte Carlo search by 
attempting to fold protein segments themselves (people are surprising good at folding 
proteins without any knowledge of energy functions or potentials.) 
 
B. Linear-Program Relaxation 



 Realizing that at its core, the Side-Chain Prediction problem is simply a 
minimization of a huge objective function comprised of the sum of inter-atomic energy 
potentials, it makes sense to try and apply standard optimization techniques to the 
problem. One such avenue of research formulates the Side-Chain Prediction Problem as a 
integer program with constraints stemming from the energy function used, and then 
relaxes to a linear program and attempts to solve. Ordinary linear program solvers are far 
too slow to be able to perform this processes on the number of variables needed for a 
side-chain conformation, however, an interesting shortcut can be taken. First, the set of 
rotamers can be treated as a probability distribution over the side-chain assignments, and 
then the integer program obtained is equivalent to a “maximum a posteriori” (MAP) 
assigment across the variables… the most likely position of rotamers, i.e. the minimum 
energy conformation. Then when the integer program is relaxed to a linear program, a 
Bayesian network technique know as belief propagation can be used to solve for the 
MAP assignment. In addition, the structure of the Side-Chain Problem can be exploited 
to employ Tree-Reweighted Belief Propagation for greater speed [Yanover et al., 2006]. 
 The linear program approximation to the Side-Chain Problem can be modified to 
use either the simple energy function employed by SCWRL3.0, or the more detailed 
energy function used by Rosetta. Both forms were solvable by the LP approximation in a 
matter of minutes for most of the trial proteins, whose sizes ranged up to 1,000 residues 
[Yanover et al., 2006]. 
 Using a new technique for belief propagation, called a cutting plane algorithm, 
Sontag and Jaakkola were able to improve the speed of the side-chain LP approximation, 
as well as solve several trial cases that Yanover et al. had been unable to compute earlier 
[Sontag and Jaakola, 2007]. These results were further improved upon in 2008, with the  

 
Number of iterations required to solve the Side-Chain Problem using LP relaxation and Map assignment, 

from [Sontag and Jaakola, 2007]. 
 

introduction of the Max-Product Linear Programming algorithm that further reduced the 
time necessary to compute the MAP assignment for the Side-Chain Problem [Sontag et 
al., 2008].  
 This method is quite fast compared to Monte Carlo searches, however it requires 
more robust testing, especially on proteins with non-native backbones, as well as 
integration into a general structure prediction system. Still it remains a promising avenue 
of research. 
 



C. Anton 
 Another brute-force attempt at the molecular dynamics version of protein 
structure prediction is the Anton supercomputer, being built by a research team at the 
D.E. Shaw Investment Management Goup. While Folding@home uses parallelism to 
calculate parallel trajectories in search of a correct fold, Anton utilizes the ability of its 
parallel processors to quickly and efficiently communicate with each other in order to 
build a single, meticulous trajectory from start to finish [Shaw et al., 2007]. Making use 
of specialized hardware configuration, and well-understood force-potentials for its energy 
function, Anton promises to be able to compute lengthy atomic trajectories with 
unprecedented accuracy. The actual results, of course, will have to wait until the project 
is completed… 
 
6. Conclusion 
  
 Many current avenues of research seem to be trending towards useful results in 
the protein structure prediction problem, yet somehow none emerge as a clear path to the 
final resolution of the problem. 
 Anton, while impressive in its sheer brawn and ability to predict structure 
completely de novo, seems lacking in the fact that many protein structures can be 
predicted from homologues or other know sequences. In addition, though the molecular 
dynamics process will be quite useful to science, raw structure prediction would also be 
extremely useful, and much of the massive parallelism Anton devotes to millisecond after 
millisecond of trajectories could be used to perform Monte Carlo searches on dozens of 
protein structures for their final conformation. In some senses, it seems like Anton is 
flexing its muscles just for the sake of flexing. 
 Linear program relaxation methods show vast potential for speed, but suffer from 
their relative newness in that they have not been rigorously tested, especially against 
experimental results. In addition, it remains to be seen whether the linear program 
framework can be extended to include the backbone as well, or whether the increase in 
size will confound the current message-passing algorithms. It would also be quite 
valuable to ascertain whether or not parallelization of the linear program relaxation 
process is possible, which with its already fast speed, might enable some sort of massive 
Monte Carlo LP relaxation approach that could circumvent any problems in accuracy or 
local minima. 
 Finally, Rosetta shows steady improvement and reliability, yet never seems quite 
fast enough or quite accurate enough. The Rosetta@home project is very promising, but 
it remains to be seen if the bottlenecks induced by the lack of communication between 
distributed processors will hamper results too drastically. An Anton-type machine 
designed for Rosetta calculations would be quite a powerful tool, maybe even one that 
continued to use Monte Carlo search for its backbone shifts and low-resolution passes but 
that incorporated linear program relaxation methods in its high resolution packing of 
side-chains. 
 As protein structure predictors prepare for CASP9 this year, it will be interesting 
to see who has made the most progress over the last two years, and perhaps some 
indication will be provided as to when we can at last put the problem of protein structure 
prediction to rest.  
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